How Accurate is the 1 Micron Dylos?  Official PM2.5 Comparison Test

dylos-1-micron-guangzhou-cover
Everyone who buys an air quality monitor wants to know how it compares to the official numbers. When I bought a Dylos DC1100 Pro laser particle counter,  I did a comparison test with the US Embassy. I put my Dylos Pro outside the window of my apartment (at Nanluoguxiang) 70 times and compared the numbers to the US Embassy’s Twitter feed at the same time. I found that the two numbers were very strongly related: r = 0.89 (remember the highest possible correlation is 1).

dylos-pro-vs-us-embassy-en
I did that test with the Pro model, but there’s also a standard model that’s $70 cheaper. At Smart Air, we call it the Standard Dylos.

How does this cheaper machine compare to the government measurements? If it’s similarly accurate, great! That means people can save money and get roughly similar results.

dylos-pro-vs-standard-en

Pro vs Standard

The Dylos Pro and Standard are almost the same judging from their front looks. So what’s the real difference?

The key is the size of particles they measure. Both of them have 2 size ranges. For the small particle channel, the Dylos Pro measures particles .5 microns and above, while the Standard Dylos measures 1 micron and above. On the large particle channel, the Pro measures 2.5 microns and above, while the Standard measures 10 microns and above. That means the Pro measures an extra range from .5 to 1 micron.

dylos-pro-vs-standard-measurement-range-en

The machine governments use is called the Met One BAM. It measures particles 2.5 microns and below. If we put the measurement ranges of the BAM, the Dylos Pro, and the Standard Dylos together, here’s what it looks like:

dylos-pro-vs-embassy-vs-dylos-en

The Pro overlaps a bit more the government machine than the Standard. For that reason, I’d expect the Pro correlates better with the government machine. But just how well do they compare empirically?

The Test

Luckily I’m not the only nerd interested in air pollution problem. An American living in Guangzhou bought the Standard and teamed up with me to test it against the US Consulate.

From November 12th to 17th, she collected data with her Dylos Standard 70 times outside her apartment,which is close to Sun Yat-Sen University in Guangzhou. She also recorded the numbers of PM2.5 concentration released by the US Consulate.

dylos-1-micron-test-map

Results

Remember how well the Pro correlated with the US Embassy? Here’s what I found before (r =.89).

dylos-pro-vs-us-embassy-en

Later I did another test by putting my Dylos Pro about 100 meters away from the US Embassy (much closer than my apartment). This time it turned out that the two numbers correlated at r = .9 – slightly higher than in the first test.

dylos-pro-vs-us-embassy-closer-en

How does the Standard Dylos compare? Here’s what we found:

standard-1-micron-dylos-vs-us-embassy-en

They correlate at r = .85! Although that’s a bit lower than the correlation between Dylos Pro and US Embassy, the two numbers are still strongly related. I think that result would surprise most people.

Converting the Dylos 1 Micron Readings to PM 2.5

Using this data, we can get a rough formula to convert between the Dylos 1 micron and the official numbers. For example, the 24-hour WHO limit is 25 µg/m³, which is approximately 1,250 on the Standard Dylos.

1-micron-dylos-to-us-embassy-en

The simplest formula to convert the Dylos 1 micron to PM 2.5 micrograms is:

Dylos 1 micron count × 0.02 = PM 2.5 µg/m3

If we use that formula to convert the Dylos numbers to micrograms, here’s how well the numbers compare:

1-micron-dylos-formula-en

On average, the formula was off from the government numbers by 9.04 micrograms.

Conclusion

The Standard correlates highly with the government numbers—only slightly less well than the Pro model.

Limitations

The conclusion is based on only one test in Guangzhou. We could draw stronger conclusions if we had more tests done in different locations and in different seasons.

Open Data

As always, I’m making the data and more testing details publicly available for fellow nerds.

P.S. Thanks to Yiwen Wang for help translating and creating figures.

Shanghai Technical Inspection Bureau Mask Tests

It’s tough to get good mask data on a wide range of consumer masks. I’ve posted some of my own test data and test data from Dr. Saint Cyr. But another great source of even more masks comes from the Shanghai Municipal Bureau of Quality and Technical Supervision. I’ve linked to their tests several times, but now they’re down for some reason. Thanks to the Internet Wayback Machine, I was able to locate an archive of their results, and I’m posting them here so that everyone has access to this important data.

I have separated the list into ‘Brands whose efficiencies are up to standard’ and ‘Brands whose efficiencies are not up to standard’ and it is noteworthy that many brands have efficiencies that are way below the standards set by the officials. Therefore, it is important to choose your masks carefully!

The Tables are shown below followed by the bar charts which can clearly differentiate the build quality of the masks. The masks are also labeled from 1-25 and a to m respectively for brands whose efficiencies are not up to standards and brands whose efficiencies are up to standards for easy reference.

1-910-1415-1920-25a-j    the rest

Capture 2 Capture

Keep in mind that these are tests of filtration effectiveness. They are not mask fit tests (which you can read more about here).

Poor Man’s Fit Test

Which mask works best on your face? I was fortunate enough to visit a lab to do a super fancy fit test, but very few of us have access to this $10,000 machine. So what should normal folks do?

图片 1

While visiting the 3M lab, I learned about what I’m calling the poor man’s fit test. It’s not as accurate as a real fit test, but it will help you identify big leaks. It’s pretty simple:

  1. Put on the mask. Make sure the metal is bent tightly around your nose.
  1. If the mask has two straps, make sure one strap is below your ears and one above like this:maxresdefault
  2. Lightly hold the mask in place and inhale sharply. While inhaling, pay attention to see if you feel a sensation of air or coolness around the edge of the mask. Pay particular attention to the area around the nose.
  3. If you feel air leaking, adjust the mask and try again. If further adjustment does not solve the problem, try a different mask.

3m-fitting

If your mask does not have an exhalation valve, you can also do the test while exhaling sharply.

Breathe safe!

Is it possible to lower the cost of clean air without sacrificing effectiveness?

A few months after I published my DIY tests, there were already Taobao stores up and running, selling DIYs even cheaper than my 200 RMB. I was intrigued. If we could really lower the cost of clean air, that’s a win!

But we have to be sure these cheaper machines are as effective. So I ordered the cheaper machines, tested them systematically, and found they performed much worse (2).

A New Way to Lower the Cost of Clean Air

But that doesn’t mean there aren’t ways to make HEPAs even more affordable. Recently I tested one way to do that: if we can shave 1 millimeter from the size of the HEPA, we can save 6% on the price. This new size still covers the fan opening, but does it still work as well?

Method

To test this question, my collaborator Anna ran 10 overnight room tests with the 29 mm in her Beijing apartment and compared it to my earlier tests of the 30 mm HEPA in the same 15m2 room.

e

Like in my earlier tests, I calculated effectiveness as the percent reduction in particulate from the start of the test to the average of the last four hours. Here’s what one of those tests looks like with the reduction calculation laid out. The blue line is indoor 0.5 micron particles; the red line is outdoor PM 2.5

q

Results

On average, the new 29mm HEPA reduced 0.5 micron particle levels in the room by 86% and 2.5 micron levels by 91%. These results were almost identical to my prior results with the 30mm HEPA.

w

Conclusion

This new HEPA lets us lower the cost of clean air without sacrificing any effectiveness. Win! We just lowered the price of Smart Air HEPAs from 80 RMB to 75 RMB.

HEPA Cost Comparison

Next I took that price and compared it to the two biggest brands out there, Blue Air and IQ Air. (Also check out the long-run cost comparison .)

Nerd Note on Replication

As a side note, this test is now the third series of room tests I’ve published with the Original DIY (early tests; 200-day longevity test). Add that to Dr. Saint Cyr’s tests, and I’d say that’s a satisfying amount of reproducibility.

For fellow data nerds, I’m posting the original data and more details about the test below.

1

2

3

4

Outdoor PM 2.5 Fluctuations

I like these long tests more than the common 20-minute tests (such as CADR tests) because this mimics how most people use purifiers. However, one drawback of these long tests is that outdoor PM 2.5 levels sometimes change over the course of 8 hours. If outdoor PM 2.5 drops, that can artificially inflate effectiveness. If outdoor PM 2.5 rises, that can artificially decrease effectiveness.

These changes should cancel out over 10 tests, but it’s worthwhile to re-run the analysis while excluding days with large outdoor changes. Among these 10 tests, two days (9/25 and 11/10) had large outdoor PM 2.5 changes. Without those two days, the averages were almost identical: 84% on 0.5 micron particles and 91% on 2.5 micron particles.

Average Outdoor PM 2.5 During Tests

It’s also worthwhile to check out bad outdoor PM 2.5 was during the tests to see if these days were representative of normal Beijing air. The average outdoor PM 2.5 was 116 micrograms. That’s about 20 micrograms higher than Beijing’s average PM 2.5 over the last five years (according to my analysis of the US Embassy’s PM 2.5 data). Thus, if anything, these tests are tougher than the Beijing average.

5

 

DIYer Makes Cannon Quieter

Bill is an expat living in the hills northwest of Beijing, and he uses his DIY Cannon to cut the particulate in his home.

图片 1

But Bill wanted to improve on the biggest downside of the Cannon–it’s a bit loud on high:

t

So Bill designed a sound dampening box for the Cannon out of foam blocks:

图片 3

There are openings in the front and back to let air through, although my guess is this lowers effectiveness by at least a few percent.

To further cut down on noise, Bill wrapped the Cannon with a blanket:

图片 4

With all that padding, Bill measured a 6 decibel drop in noise! If you have a Cannon already, here’s an idea of what that’s like: That’s 2 decibels quieter than the regular Cannon on low (52 db).

If the noise gets to you and you don’t mind a craft project, I sanction it! However, keep in mind two things:

  1. Monitor the fan temperature. Make sure your design does not allow the fan to overheat.
  2. I suspect this will lower effectiveness by at least a few percentage points. I can’t say more precisely without testing it.

Great work, Bill!

 

Winter (Air) is Coming

Another year, another Beijing winter. As winter arrives to Beijing, I got to wondering: how much worse is winter air?

To get to the bottom of it, I analyzed the last seven years of US Embassy PM 2.5 data. I found that the capital’s air has averaged 111 micrograms in the winter versus 92 micrograms for the rest of the year.

a1

Just how bad is that? The WHO 24-hour PM 2.5 limit is 25 micrograms. That means Beijing’s summers average three times the limit, and winters average over four times limit.

b1

Breathe safe this winter!

 

Shanghai Test: Is indoor air better than outdoor air?

When I got my very first particle counter, I tested sites around Beijing to see whether indoor air was better than outdoor air. It was.

But that test had some limitations. My first particle counter didn’t have a battery, so I had to estimate outdoor particulate in some locations. I also didn’t look into any variables that could give some indoor locations better air than others.

Shanghai Test

Now I’ve got a fancy new Dylos DC1700 battery-power particle counter! Now I can easily take measurements indoors and outdoors. Here’s what it looks like:

d

I took it to Shanghai and tested 14 times in 11 locations on August 27-29. While I was there, the AQI averaged 158 (70 micrograms). I tested mostly around the French Concession, although I also made it out to Fudan University. None of the locations used air purifiers.

sample-locations

I tested in any type of place I could, and I mean any place. Here’s what I recorded in a public bathroom stall:

g

Results

I focused on the smaller 0.5 micron particles (which are highly correlated with the government’s PM 2.5 readings). Across the 14 samples, here’s what I found. The red line represents paticles in the outdoor air.tumblr_inline_nvq1uiANsH1s4lgm1_500

On average, indoor air had just 69% of the particles of outdoor air.

Why do some places have cleaner air?

This fits with my findings in Beijing–indoor air has less particulate than outdoor air. But next, I wanted to see if I could figure out why some places had cleaner air than others. For example, my unpurified apartment air (unpurified because I just got home) had just 30% of particles compared to outdoors, but the public bathroom had 134% of particles compared to outdoors. Woah!

I tested the simplest explanation possible: Were the windows and doors open? Most particulate pollution comes from outside. And in closed rooms, particles will slowly fall to the ground. Thus, indoor air should be better when the windows are doors are closed.

To test that idea, I looked only at places that had doors or windows open:

Yikes! If the doors or windows are open, I was breathing air that was basically as bad as outdoor air (92%). For example, here was how air compared indoors and outdoors in the public bathroom:tumblr_inline_nvq1x22DWj1s4lgm1_500

But things were much better in places with the doors and windows closed:

tumblr_inline_nvq1ybDXJh1s4lgm1_500

With the doors and windows closed, the air had 57% of the particles of outdoors. For example, here’s the air inside Fudan University’s Economics Institute versus outdoors:tumblr_inline_nvq1ynfTmR1s4lgm1_500

In places where the doors and windows were closed, the air was always better than outside. The one exception was the Yuanyuan Restaurant, at 115%. Those particles could be coming from the kitchen.

So what?

The conclusion here is simple: We’re usually breathing much less particulate indoors than outdoors–even without a purifier.

Clean Lung Tips

  1. Work out indoors if possible. I work out indoors in a gym rather than outdoors when I’m in China.
  2. Sit inside at cafes or bars (unless people are smoking).

Does that mean indoor air is safe?

Indoor air has less particulate, but remember that “less particulate” does not always mean “safe.” Out of all 14 tests, NONE of the numbers was below the WHO 24-hour PM 2.5 limit:tumblr_inline_nvq21vZkA11s4lgm1_500

One Last Exception

Finally, remember that pollutants can sometimes come from indoors. This is usually from the paints and chemicals used in remodeling and new furniture. If your home smells like paint or new furniture, you may be safer opening the windows (or at least using activated carbon).