Cost of air pollution

Death in the Air Infographic by World Bank

The World Bank released a new report titled “The Cost of Air Pollution: strengthening the economic case for action” and in it they detail how air pollution is now the 4th leading risk factor for deaths worldwide. That’s worse than the deaths attributed to alcohol and drug use, HIV/AIDS, and even malaria. Besides the other reasons for reducing air pollution (climate change, our health, etc.) the economic one is probably the one that will communicate the strongest to everyone as air pollution costs the global economy in terms of foregone labor income to the tune of $225 Billion each year globally.

Click here for full report.

Click here to view the infographic in higher resolution.

Air pollution has emerged as the fourth-leading risk factor for deaths worldwide. While pollution-related deaths mainly strike young children and the elderly, these deaths also result in lost labor income for working-age men and women. The loss of life is tragic. The cost to the economy is substantial. The infographic below is mainly based on findings from The Cost of Air Pollution: Strengthening the economic case for action, a joint study of the World Bank and the Institute for Health Metrics and Evaluation (IHME).
Air pollution has emerged as the fourth-leading risk factor for deaths worldwide. While pollution-related deaths mainly strike young children and the elderly, these deaths also result in lost labor income for working-age men and women. The loss of life is tragic. The cost to the economy is substantial. The infographic below is mainly based on findings from The Cost of Air Pollution: Strengthening the economic case for action, a joint study of the World Bank and the Institute for Health Metrics and Evaluation (IHME).
Source Pollution

10 Facts About Air Pollution

We get many questions about air pollution in our office, and understandably so. It’s a topic that isn’t well understood or well-reported about in certain parts of the countries in which we work. In some cases, it is difficult to distinguish research-backed findings from common beliefs. To contribute to collective learning, here is a quick list of top 10 facts about air pollution.

  1. Air pollution is made up of chemicals, particulates, and biological materials. Common  components include, but are not limited to: nitrogen, sulfur, carbon monoxide, carbon dioxide, dust, and ash.
  2. Air pollution is caused by both human and natural contributors. Industries, factories, vehicles, mining, agriculture, forest fires, volcanic eruptions, and wind erosion all cause air pollution.
  3. According to the Global Burden of Disease report (2013), air pollution contributes to more than 5.5 million premature deaths every year. Another report by the International Energy Agency estimates the number to be 6.5 million deaths per year.
  4. Research has linked air pollution to multiple diseases: acute lower respiratory infections, chronic obstructive pulmonary disease, lung cancer, tuberculosis, low birth weight, asthma, and cataract.
  5. According to the WHO, 98% of cities in low- and middle-income countries with more than 100,000 habitants have unsafe levels of air pollution.
  6. Of the top twenty most polluted cities in the world, 13 are in India and 3 are in China. Delhi ranks as 11th most polluted, whereas Beijing ranks as 57th most polluted.
  7. Over half of India’s population—660 million people—live in areas with unsafe levels of air pollution.
  8. On average, Indians living in polluted areas will lose 3.2 years of their lives due to air pollution.
  9. In 2014, India and China tied at 155 among 178 nations in rankings measuring how countries are tackling air pollution in the world, despite both countries having some of the worst air quality in the world.
  10. Pregnant women who live in  high traffic areas have a 22% higher risk of having children with impaired lung function than those living in less polluted areas.
Flickr Photo

Is Summer Air Better than Winter Air?

 

Summer is here, bringing with it clearer skies and certainly cleaner air. Right?

Summer always seems to drive out the dense clouds of pollution that suffocate many Indian cities. However, while summer air is in fact cleaner than air during other seasons, it’s still far from safe according to the standards set by the World Health Organization (WHO).

During the winter, cold air traps pollutants close to the ground, a process called an “inversion.” Summer heat prevents this inversion, which does improve the air quality. However, average air conditions in India are still clearly not ideal.

Here’s a map of today’s pollution levels across India:

 

pollution levels
Source: https://aqicn.org/map/india/

 

On a day like today, when the AQI in Chennai, Hyderabad, Kolkata, Mumbai and New Delhi is in the ‘unhealthy’ or ‘very unhealthy’ range, we often wonder at Smart Air if the pollution in summer really is any better than the winter.

We got to the bottom of it by analyzing the US Embassy’s data in New Delhi and US consulates’ data in Mumbai, Chennai, Hyderabad, and Kolkata. So is summer air really better than winter air? We took the data from the past two years (June 2014 to June 2016) and broke it down into four seasons: winter (December to February), summer (March to June), monsoon (July to September), and post-monsoon (October to November). Next, we calculated the average particulate pollution (PM2.5) levels for each season.

Across the five cities we looked at, PM 2.5 levels were 26% better in the summer—118 micrograms in the winter compared to 49 micrograms in the summer. That means summer air is better.

Let’s take a look at the difference in PM2.5 between the five cities during different seasons:

 

 

US Embassy Air Quality Data
U.S. Department of State Data, June 2014 – June 2016. Air quality data may not be validated or verified

 

But how good is “better?” Here in India, “better” is nowhere near “safe.” Over the course of the two years we analyzed, average annual pollution levels in all five cities never fell below even the WHO’s more lenient (24-hour) exposure limit (25 micrograms per cubic meter). In fact, the average pollution levels across all the cities we tested was about 500% the WHO annual limit (10 micrograms) and 200% of the more lenient 24-hour limit (25)!

 

The lowest summer pollution level we found was Chennai (31 micrograms). But even that lowest summer level still surpassed the WHO limits.

Below are the 2-year graphs for each city. You can see that each city has two distinct swells in PM2.5 levels during the winter, each followed by 2 clear dips during the summer. Interestingly enough, comparing the summer and winter levels of each city from 2014-2015 to 2015-2016 shows some cities’ PM2.5 levels improving, while others’ increase between years. Most notably, Chennai’s winter pollution levels dropped significantly between years as did Hyderabad’s, while New Delhi and Kolkata experienced clear increases. However, we’re not sure whether or not this improvement and worsening of PM2.5 levels can be attributed to cities’ environmental efforts (or lack thereof).

The conclusion? The evidence is quite clear: summer air is in fact better than winter air. However, despite all the blue skies and warm days we’ve been having lately, there’s still a need to protect yourself inside and outside the house. Don’t mistake “better” for “safe.” Neither summer nor winter air meets WHO health standards and summer air is still of significant concern to public health.

 

Chennai US Department of State
U.S. State Department Data – June 2014 to June 2016. Data may not be fully verified or validated.

 

US Embassy Air Quality
U.S. State Department Data – June 2014 to June 2016. Data may not be fully verified or validated.

 

US Embassy Air Quality Data
U.S. State Department Data – June 2014 to June 2016. Data may not be fully verified or validated.

 

US Embassy Air Quality Data
U.S. State Department Data – June 2014 to June 2016. Data may not be fully verified or validated.

 

US Embassy Air quality data
U.S. State Department Data – June 2014 to June 2016. Data may not be fully verified or validated.

 

图片 1

Do pollution masks work?

When a billion people in China (and quite a few expats) woke up to the severe air pollution in almost every city in China, it forced a billion people to become experts in a complicated scientific question. Do masks work?

Since then, I’ve given talks with hundreds of people all around China about how to protect themselves from air pollution. In those talks, I’ve heard doubts from smart, skeptical people. Here I’ll answer those doubts because, fortunately, smart, skeptical scientists (plus one dedicated nerd—yours truly) have empirically tested these questions.

Here are the two most frequent skepticisms I hear about masks.

  1. “There’s no way they capture the really small particles”

The skeptic case:

The most dangerous particles are the smallest particles, but masks are so thin. How could they possibly get the smallest particles?

The scientific test:

Researchers from the University of Edinburgh tested different common masks by running a diesel generator (to mimic car exhaust) and piping the exhaust through different masks. They used a particle counter to see how many particles made it through the mask. Here’s my super scientific rendering of the setup:

图片 1

One important detail: the particle counter they used measures down to .007 microns. We’re talking about truly tiny particles here!

First they tried a simple cotton handkerchief. Sometimes I see bikers in China wearing these.

2

Not great, 28% of particles blocked.

Next they tried a cheap surgical mask.

3

Surprisingly good! (Fit tests generally show lower results–see below–but still a lot higher than most people’s intuition.)

Next they tried several bike masks.

4

Most were around 80%.

Then they tried several cheap 3M masks.

5

They all scored over 95%. Pretty good!

Conclusion: masks capture even very small particles.

  1. “OK, they capture the small particles, but when you wear them, all the air just leaks in the side.”

The skeptic case:

Masks work in theory, but those tests aren’t on real faces! When you actually wear them, you can’t get a good enough fit, so they’re basically useless.

The scientific test:

This question is tougher to answer because you have to measure the mask while you’re actually wearing it. For that, you need a really expensive fit test machine. Fortunately, I begged and begged 3M until they let me use their lab in Beijing:

6

The blue tube is sampling air outside the mask, while the white tube is sampling air from inside the mask (more details on the methods here).

Beijing-based Dr. Richard Saint Cyr also tested masks, so I’ll combine my data with his. Here’s how well the masks worked on our faces:

7

How well do masks work for the broader population?

It’s important to make clear: fit test results on my face won’t always be the same for other people’s faces. However, there is evidence from a broader population that masks fit most people well. A scientific study of 3M masks on 22 Chinese people found a median fit score of 99.5%–essentially the same as the top results from Dr. Saint Cyr and me.

Best yet, effective masks don’t cost a lot of money. And you certainly don’t need to buy the most expensive masks on the market to breathe clean air.

8

A note on gases: Note that these tests are about particulate pollution. Most commercially available masks don’t target gas pollutants like NO2 and O3, so it’s not 100% protection.

  1. Is there a documented health benefit of wearing a mask?

This is probably the hardest question to answer. However, there are two solid studies that have randomly assigned people in Beijing to wear masks or not and measured their heart rate and blood pressure (1,  2).

9

While wearing masks, people had lower blood pressure and better-regulated heart rates.

10

Conclusion: Masks capture even the smallest particles—even while you’re wearing them. And they have documented health benefits. That should be enough to satisfy even the skeptics!

3m-fitting

Poor Man’s Fit Test

Which mask works best on your face? I was fortunate enough to visit a lab to do a super fancy fit test, but very few of us have access to this $10,000 machine. So what should normal folks do?

图片 1

While visiting the 3M lab, I learned about what I’m calling the poor man’s fit test. It’s not as accurate as a real fit test, but it will help you identify big leaks. It’s pretty simple:

  1. Put on the mask. Make sure the metal is bent tightly around your nose.
  1. If the mask has two straps, make sure one strap is below your ears and one above like this:maxresdefault
  2. Lightly hold the mask in place and inhale sharply. While inhaling, pay attention to see if you feel a sensation of air or coolness around the edge of the mask. Pay particular attention to the area around the nose.
  3. If you feel air leaking, adjust the mask and try again. If further adjustment does not solve the problem, try a different mask.

3m-fitting

If your mask does not have an exhalation valve, you can also do the test while exhaling sharply.

Breathe safe!

1

Do ionizers actually clean air?

The other day, someone on Quora asked whether ionizer fans actually purify the air. This is an important question because ionizer purifiers are all over the place. For example, I was at a friend’s apartment in the US, and I saw his tower fan had an ionizer button on it:

image

It’s also important because several friends in China have sent me links to products like this:

image

Amazing! A “miraculous purifier” that removes PM 2.5 and formaldehyde in just 30 seconds. And all that for far cheaper than regular purifiers and even cheaper than building your own purifier.

If this is true, my life in Beijing is now so much easier. But is it true?

So how do ionizers work? 

Here’s my bedroom, with an ionizer and bad particles in the air:

image

That ionizer shoots out negative ions:

image

Those ions cause the particles to stick to surfaces, like my bed, the wall, and the floor:

image

That’s the principle behind ion generators. It’s hard to see it happening with these tiny particles, but you’ve seen it on a visible scale if you’ve seen someone rub a balloon on their hair and then stick it to a wall.

image

But wait #1

A summary of scientific tests of air purifiers found that most ionizers have no noticeable effect on particulate levels (p. 8). Their conclusion is that most ionizers are too weak to have an effect. Studies do show an effect if they use very strong ionizers–much stronger than most ionizers on the market (p. 19).

But wait #2

OK, so regular ionizers don’t work, but we can use a big one! The problem is, when you put that many ions into the air, it produces ozone. Ozone is harmful, so that’s not good!

But wait #3

Even if we use a really strong ionizer and even if we can accept the ozone, you might have noticed that the ionizer didn’t actually filter out the particles. It just made them stick to my bed, wall, and floor.

First, that’s gross. Since the particles floating around here in Beijing include things like arsenic cadmium, and lead, I’d rather not have them stick to my pillow.

Second, they’re still a danger. The particles are just sticking to my bed. So let’s say Thomas comes home:

image

When I sit down on my bed, I’ll dislodge those particles, and they’ll float back into the air. Here’s my super scientific rendering of that process:

image

Those problems are what led Consumer Reports to publish tests and warn people not to buy the Sharper Image Ionic Breeze. Sharper Image sued Consumer Reports; Consumer Reports won.

So when people send me links asking about these “miraculous” purifiers, I tell them to steer clear.

Careful not to overgeneralize

But let’s not draw too broad of a conclusion here. This doesn’t mean ALL air purifiers are junk. Instead, I use HEPA filters. HEPAs actually capture particles, and they are backed by empirical tests (1, 2, 3, 4, 5, 6). Here’s a little test I did with HEPA filters in Beijing:

 

2

Is Air Pollution a Problem in Mongolia?

图片 1

According to The Guardian, Ulaan Bator is the world’s second most polluted mega city. From 2008-2011, the average PM 2.5 level was nearly 150 micrograms. In 2014, Beijing averaged 98 micrograms; the WHO 24-hour limit is 25 micrograms.

 

2

Is it a bustling manufacturing sector? Manufacturing is still a tiny percentage of the Mongolian economy. Cars filling the streets? Not that either.

3

It turns out, most of Ulaan Baatar’s pollution is from people burning coal to keep warm. A little heat is necessary where winter temperatures dip to -40 C.

Yet all that air pollution causes 1 in every 10 deaths in the capital, according to an academic study. That makes clean air an urgent need in this city of 1.2 million people.

Smart Air will host its first-ever Mongolia workshops in Ulaan Baatar! Join us in the Mongolian capital September 11th and 12th.

Join us to learn how DIY purifiers can help remove dangerous particulate pollution from inside the home. Smart Air founder Thomas Talhelm will explain how even the priciest purifiers use a fan to push air through a HEPA filter. Workshop participants will make their own in just 10 minutes, and they’ll take it home to start breathing easier right away.

slideshow_homepage_image01

Types of FiltersTypes of Filters

Premise: This blog is for people concerned about air pollution. There are many valid reasons people want air purifiers: pet allergies, pollen, and asthma. However, these are not what I’m concerned about while living in China. So I assess purifiers solely based on whether they can help protect me from particulate air pollution.

With that in mind, here are the three most common types of filters in portable air purifiers:

  1. UV light filters are designed to kill bacteria. In China, I’m concerned about air pollution, not bacteria, so UV filters are unnecessary. But beyond that, Consumer Reports says that UV filters in most air purifiers don’t even kill bacteria:

The Environmental Protection Agency cautions that air cleaners outfitted with ultraviolet light are unlikely to kill bacteria and mold because they won’t be in contact with UV light long enough to have any effect.

1

Conclusion: UV filters aren’t what I need.

  1. Activated carbon filters use charcoal screens to catch certain types of chemicals and organic matter that happen to interact with carbon. In other words, these filters catch some things, but not particulate in general. In sum, these will do a little bit, but they aren’t the whole solution.

2

Activated charcoal is good at trapping other carbon-based impurities (“organic” chemicals), as well as things like chlorine. Many other chemicals are not attracted to carbon at all – sodium, nitrates, etc. – so they pass right through. Howstuffworks.

Conclusion: Carbon filters may help (particularly for certain types of gases that carbon can get), but they don’t target all particulate matter. It would be a mistake to use ONLY a carbon filter to get rid of particulate pollution.

  1. HEPA filters are the solution. “HEPA” sounds fancy, but it’s just a standard that means the filter catches 99% of particles .3 micrometers and above (they also get particles smaller than .3 micrometers–the .3 designation is based on the overlapping point of different types of filtering). That covers a lot of particulate pollution–the most-often cited figures are for 2.5 micrometers.

3

HEPA filters aren’t rocket science. They work pretty simply: particles get stuck in the fiberglass fibers (using a few types of physical filtering processes). In fact, if you have a vacuum cleaner, it probably has a HEPA filter in it. You can get one for about $10.

Contrast that with the major purifier companies like IQ Air and Blue, which have proprietary HEPA filters with names like “HyperHEPA” that cost $200. These may have benefits, such as a longer lifetime or smaller pore size, but it’s not clear to me that’s necessary or worth 20 times the price.

Bottom line: If your concern is particulate air pollution, a HEPA filter is really all you need. And for that, you don’t need spend 8,000 RMB. You can make your own for 166 RMB.

QQ20160707-2

Are Particle Counters and Government Machines the Same?

My particle counter is a beast–I’ve loved it. But I’ve always wondered how the counts of laser particle counters like mine:

11

…compare to the measurements of the huge stationary air quality monitoring stations that governments use, like this one in New Zealand:

2

If you look at the US Embassy’s Twitter feed, you’ll notice that its raw numbers are “concentration,” which it explains are micograms per cubic meter (µg/m³). The way government (BAM) machines work is that they use a source of carbon 14 that emits beta particles and then measure how many of those beta particles make it through to a detector. They then use those numbers to estimate the weight of those particles (micrograms).

In contrast, laser particle counters like mine use a laser and a photo diode sensor to estimate the number of particles in the air. I don’t see why the weight should be any more important than the number–they’re both telling you how much particulate pollution is in the air.

As an analogy, if we want to understand the crowd at a basketball game, we could count the number of people, or we could weigh those people. Of course, the more people, the heavier the total weight. And of course the two numbers won’t correlate perfectly if we have more heavy people on some days and more children on other days. But the weight and the total number should correlate highly.

The other major difference is that laser particle counters give the number of particles at that particle size and above. Government machines give the number of particles at that size and below.

To see how the two numbers compare, I put my particle counter outside my second-story window 70 times (that’s nerd dedication!) and compared my numbers to the US Embassy’s Twitter feed at the same time. Here’s what they look like:

3

They correlate at = .89, meaning the two numbers are very strongly related (remember the highest possible correlation is 1). That high correlation is especially impressive given that my house is near Gulou, and the US Embassy is out in Liangmaqiao–about 7 kilometers away.

The difference between the readings was particularly noticeable on days where a strong wind moved through Beijing. I noticed several times that my particle counts would drop before the embassy’s counts as the wind moved in from the west (where my house was) to the east (where the embassy is). (Remember, Beijing’s air gets a lot cleaner when we get winds from the west.)

If we want to get a rough conversion between the numbers, we can remove a few of the outliers and compute a regression line:

4

For example, a government concentration of 100 micrograms (four times the WHO limit!) is approximately 25,000 on the Dylos particle counter:

5

And the 24-hour WHO standard of 25 µg/m³ is about 3,000-4,000 on the Dylos.

During my home tests (before turning my filter on), the air inside my home was very often above 3,000 (even though it was still much cleaner than outside).

Conclusion: My particle counter is giving measurements that are highly related to the much larger air monitoring stations. The scale is different, but the two can be roughly converted.

 

 

1-34

The Limits to Counting Particles

If Particle Counting has just one take-home message, it is that you can protect your yourself from particulate pollution in China, and it costs a lot less than filter companies want you to think. However, I don’t want to mislead people into thinking that turning on a filter will definitely solve any possible problem. I talked with Louie Cheng, who founded Pure Living China, a company that tests for pollutants in homes and offices, and we came to a few conclusions about the limits of filters:

  1. Particulates are not everything. 

Particulate pollution is a big deal in China, and it’s bad for your health. There are lots of studies out there showing this, but the one that pops into my head the most is the study showing babies exposed to more air pollution are born with smaller heads. If that’s not scary, I don’t know what is.

However, particulates are not everything. Gas pollutants can be a problem too. Although I suspect that almost every home in China has particulate pollution while only some have gas pollution, there are dangerous gases out there like radon, carbon monoxide, and the broad category of “volatile organic compounds.” Unfortunately, even the fancy filters have trouble consistently capturing a wide range of gases.

If you’re considered about gases, consider getting a home test from Pure Living China. They’re not cheap, but I’d consider it if I had unexplained health problems or a child at home.

I try to write “particulate pollution” rather than “pollution” because not all pollutants are particulates. However, it’s easy to just covert “particulate pollution” to “pollution” in our minds.

  1. Some particles are too small for filters.

A quick look at the size of different particles and gases makes it clear that particulate filters can’t get everything:

1

HEPAs are rated to .3 microns (micrometers), and I’ve seen reports that they can get particles of .1 microns, but there are still leftovers. For example viruses and gases will pass through air filters (but not bacteria). (This, by the way, explains what I call “the smoker paradox.” More on that later.)

  1. Opening your window is good (sometimes). 

The air outside in China is scary, but sometimes it is actually good to open your windows. That is because some pollutants can come from inside. Some common sources are formaldehyde used in some furniture, cooking without a good vent, and construction work.

In those cases, it can actually be a good thing to open your window, particularly on blue sky days.

Conclusion: Air purifiers will get a lot of pollutants out of your air, but there are limits to what you can filter out. Consider opening your windows on clean days–and particularly if you have renovation going on indoors or are cooking without an adequate vent.

Thank you to Louie Cheng for sharing his expertise.