1-8

Does adding a carbon layer reduce particulate effectiveness?

I recently published tests showing that carbon actually removes VOCs. But adding that carbon layer raises a question: adding carbon means the fan has to power through yet another layer of resistance. Does that make purifier less effective at removing particulates?

Methods

To test this question, I ran 10 room tests with the Cannon and 10 tests with the Original DIY in the same 15m2 Beijing apartment as my earlier tests without a carbon layer.

I measured how much particulate it removed with a Dylos particle counter and compared the particle counts (1) before I turned on the purifier at night and (2) the average of the last four hours before I woke up in the morning.

Results

With the additional carbon, the Cannon particulate effectiveness dropped 1-2%. Thus carbon has a very minor negative effect on the Cannon.

1

However, the Original DIY had a harder time powering through the extra layer. Its 0.5 micron effectiveness dropped 19%, and 2.5 micron effectiveness dropped 15%.

2

Conclusion

For people who need carbon (and that is not everyone), I would recommend adding the carbon to the Cannon, but I would think twice about adding carbon to the Original.

As always, I’m posting the raw data and more details on the test for fellow nerds below.

(more…)

3-10

Does Carbon Really Work?

I wrote early on that my number one concern in China is particulate pollution. It’s on so many people’s minds that nowadays even the guy I buy chuan’r from knows the word “PM 2.5.”

HEPAs do an amazing job at removing particulates, but particulates aren’t everything. Gases like volatile organic compounds (VOCs) are so small that they slip through HEPAs. “VOC” is a big category, including things like benzene and formaldehyde. VOCs can cause cancer, throat irritation, dizziness, and other not-fun side effects.

image

And for homes that have VOCs problems, we’re supposed to use activated carbon filters. But do they actually work?

When I published the instructions for how to build your own purifier, I wasn’t comfortable recommending activated carbon because I hadn’t tested it, and I didn’t want to just trust what the big filter companies say. So this year, I set out on a journey to test whether carbon actually works.

Method

I soon learned that gas testing is not easy. First off, “harmful gases” is not a natural category. You can buy a particle counter that will detect all particles of a certain size, but there is no detector that will detect all gases. Instead, you need one for each type of gas, and that is not cheap.

In this case, my scientific curiosity cost me $3,542 for this Industrial Scientific Ibrid MX6. It detects VOCs, carbon monoxide, sulfur dioxide, hydrogen sulfide, and nitrogen dioxide. It uses a photo-ionization detector to measure VOCs from 0-2,000 parts per million with a resolution of .1.

image

Next, I needed a source of gas pollution. Interestingly enough, my apartment didn’t have enough VOCs to register on the MX6–nor did 8 other Beijing apartments I tested. (That speaks to whether purifier companies should scare people into thinking that everyone needs carbon.)

Because I didn’t have detectable VOCs in my home, I had to go out and find VOCs to pump into my room. I chose cigarettes because they are known to emit VOCs like benzene and formaldehyde.

In each test, I burned 3 Marlboro cigarettes in an enclosed 3.78 m2 porch. At the same time, I ran the Cannon on high for five tests with a composite carbon filter on the front:

image

I ran four control tests with a fan but no filter. That way the room still has air flow, but no carbon. The cigarettes burned out after about 15 minutes, and I left the fans on for another 30 minutes.

Results

Looking at the Cannon + carbon alone after the cigarette extinguished, the VOCs dropped. Here is the data from one test:

image

From there we can zoom out to include the time the cigarette was burning and the control fan-only condition. From there, it becomes clearer that the carbon was removing VOCs above and beyond just having a fan on.

Averaging across all of the tests, the VOCs reached a maximum of about 1 ppm while the carbon was on. Without the carbon, VOCs reached 1.5 ppm.

image

After the cigarette burned out, the Cannon cleared the air of VOCs in 5 minutes to just over 15 minutes on average. Without carbon, the air still had VOCs after 30 minutes.

Averaging over all of the tests, the carbon removed 38% of VOCs by the time the cigarettes burned out compared to the fan-only condition. The Cannon removed 68% after another 5 minutes and 100% by 20 minutes after the cigarettes burned out.

image

Conclusion

The results showed that carbon effectively removed VOCs. Thus, I’ve decided these filters are ready for game time. I’ve started shipping these tested carbon filters via Taobao and PayPal for 70 RMB.

Does everyone need carbon?

Purifier companies have a financial incentive to convince people to buy carbon filters. They make more money if they can scare people into buying carbon. But does everyone need carbon?

I don’t want to scare people into buying carbon. Why? In most homes, my MX6 detected zero VOCs. I only found VOCs in homes that had an obvious source of pollution such as remodeling or smoke. And in all of the places where the MX6 detected VOCs, I was able to notice a chemical smell. That makes sense, since lots of VOCs have noticeable smells, like benzenetoluene, and formaldehyde.

Now, I don’t want to say that VOCs are never a problem. Photo ionization detectors like the MX6 are not the most sensitive test type out there. I bet I’d pick up small amounts of VOCs if I sent air samples to a laboratory.

However, scientists have used fancier methods and found similar results. For example, scientists in Hong Kong tested homes and found that most non-smoking homes did not have un-safe levels of VOCs. We need more tests like this.

For now, I will not be using carbon in my home, but I think it is right for people whose homes have:

1. Recent remodeling

2. Recent painting

3. Smoking

4. Odors

5. Nearby sources of gas pollutants (such as living near a factory)

6. Symptoms such as inflammation and asthma

Do I still need the HEPA?

Yes. Carbon is designed to get organic compounds, not particulate in general. I wouldn’t have even tested this, but Anna accidentally forgot to attach the HEPA and unknowingly ran a regular particulate room test with carbon only.

image

The results weren’t pretty–far below the 95% reduction with the added HEPA. Thus, I do not recommend using carbon only.

As always, I’m posting the raw data and more details on the methods for fellow nerds below.


Gas Test Methods

During the gas test, all of the doors and windows were closed. Because the test was in an enclosed porch, there were several windows, which means the room was less well sealed than an interior room.

During the test, I burned three Marlboro cigarettes pointing straight up in an ash tray on the floor. The gas detector was on a small ledge at just above waist height, only a few feet laterally away from the cigarettes. The purifier was placed a couple feet from the cigarettes in the center of the porch with the air stream pointing upward.

Limitations

Burning three cigarettes in a small room is extreme. With the exception of airport smoking lounges, few places will have this much smoke in one place. However, the test does demonstrate that carbon reduces VOCs.

Many people have asked me how long carbon filters last. Unfortunately I don’t have a good answer to that. The carbon filter I used was still effective after several of these powerful smoke tests, which should be far more VOCs than a normal person would face, but I cannot say more than that.

VOC Info: The PID lamp has an eV rating of 10.6. eV ratings determine what types of VOCs PID machines can detect. With a rating 10.6 eV, this machine was probably reliably detecting benzene, which has an ionization potential of 9.25 and perhaps toluene, which is at 8.82.

This PID lamp is not designed to detect formaldehyde, which has an ionization potential of 10.88. However, I later conducted tests with formaldehyde samples and found that the MX6 could detect it, and an engineer at Industrial Scientific told me he thought it was plausible that the machine would pick up on formaldehyde, although not 100% reliably.

Detector Info: The MX6 came with a pump to draw in air (as opposed to versions that passively sample air). During the test, it was outfitted with the filter designed to prevent particles from entering the machine. I zeroed the machine if necessary before the test.

Early Tests: As I started doing the tests, I was still figuring out how to do the tests–it seems simple when you look at the results, but tests like this are not easy! For the first three control tests, I had not yet decided to let the MX6 run for 30 minutes after the cigarettes burned out, so data is limited for those three occasions. However, the conclusions are similar with those three tests excluded.

Control Condition: In the control condition, I used a Honeywell fan on the low setting to approximate the air flow of a Cannon on high with a filter on it. In other words, a filter lowers the air flow, so the Honeywell may be a better approximation of the amount of air flow during the experimental condition.

In addition, I ran tests with an IQ Air Health Pro Plus (1) with the filters removed and (2) with the pre-filter only as additional control tests. The results were similar to the Honeywell fan-only tests. I’ll use the IQ Air tests as the control condition in tests of the IQ Air’s ability to remove VOCs in the future.

Gas Test Data

Below is a summary of the gas tests. Because the raw data file is large, I’m making it available as a download here.

image

Data: Carbon-only test

image

Anna only ran the carbon-only test for one day because it was an accident. More tests would give a more reliable estimate of the effectiveness of using carbon only, but because carbon isn’t designed to get particulates in general, I’m hesitant to subject anyone to that much dirty air. On the upside, the outdoor PM 2.5 was quite stable that day, only moving up 4 micrograms from start to finish.

 

 

1-34

The Limits to Counting Particles

If Particle Counting has just one take-home message, it is that you can protect your yourself from particulate pollution in China, and it costs a lot less than filter companies want you to think. However, I don’t want to mislead people into thinking that turning on a filter will definitely solve any possible problem. I talked with Louie Cheng, who founded Pure Living China, a company that tests for pollutants in homes and offices, and we came to a few conclusions about the limits of filters:

  1. Particulates are not everything. 

Particulate pollution is a big deal in China, and it’s bad for your health. There are lots of studies out there showing this, but the one that pops into my head the most is the study showing babies exposed to more air pollution are born with smaller heads. If that’s not scary, I don’t know what is.

However, particulates are not everything. Gas pollutants can be a problem too. Although I suspect that almost every home in China has particulate pollution while only some have gas pollution, there are dangerous gases out there like radon, carbon monoxide, and the broad category of “volatile organic compounds.” Unfortunately, even the fancy filters have trouble consistently capturing a wide range of gases.

If you’re considered about gases, consider getting a home test from Pure Living China. They’re not cheap, but I’d consider it if I had unexplained health problems or a child at home.

I try to write “particulate pollution” rather than “pollution” because not all pollutants are particulates. However, it’s easy to just covert “particulate pollution” to “pollution” in our minds.

  1. Some particles are too small for filters.

A quick look at the size of different particles and gases makes it clear that particulate filters can’t get everything:

1

HEPAs are rated to .3 microns (micrometers), and I’ve seen reports that they can get particles of .1 microns, but there are still leftovers. For example viruses and gases will pass through air filters (but not bacteria). (This, by the way, explains what I call “the smoker paradox.” More on that later.)

  1. Opening your window is good (sometimes). 

The air outside in China is scary, but sometimes it is actually good to open your windows. That is because some pollutants can come from inside. Some common sources are formaldehyde used in some furniture, cooking without a good vent, and construction work.

In those cases, it can actually be a good thing to open your window, particularly on blue sky days.

Conclusion: Air purifiers will get a lot of pollutants out of your air, but there are limits to what you can filter out. Consider opening your windows on clean days–and particularly if you have renovation going on indoors or are cooking without an adequate vent.

Thank you to Louie Cheng for sharing his expertise.